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• Exam duration.  The exam is scheduled to last 75 minutes. 

• Materials allowed.  You may use books, notes, your laptop/tablet, and a calculator.  

• Disable all networks.  Please disable all network connections on all computer systems. 

You may not access the Internet or other networks during the exam. 

• No AI tools allowed.  As mentioned on the course syllabus, you may not use GPT or other 

AI tools during the exam. 

• Electronics.  Power down phones.  No headphones.  Mute your computer systems. 

• Fully justify your answers. When justifying your answers, reference your source and page 

number as well as quote the content in the source for your justification.  You could 

reference homework solutions, test solutions, etc. 

• Matlab. No question on the test requires you to write or interpret Matlab code.  If you base 

an answer on Matlab code, then please provide the code as part of the justification. 

• Put all work on the test.  All work should be performed on the quiz itself.  If more space 

is needed, then use the backs of the pages. 

• Academic integrity.  By submitting this exam, you affirm that you have not received help 

directly or indirectly on this test from another human except the proctor for the test, and 

that you did not provide help, directly or indirectly, to another student taking this exam. 

 

 

 

Problem Point Value Your score Topic 

1 27  System Properties 

2 25  FIR Filter Analysis 

3 24  System Identification 

4 24  Upsampling, Downsampling & Filtering 

Total 100   

 

 



Problem 2.1.  System Properties.  27 points.  

Each discrete-time system has input x[n] and output y[n], and x[n] and y[n] might be complex-valued. 

Determine if each system is linear or nonlinear, time-invariant or time-varying, and causal or not causal. 

You must either prove that the system property holds in the case of linearity, time-invariance, or 

causality, or provide a counter-example that the property does not hold.  Providing an answer without 

any justification will earn 0 points. 

Part System Name System Formula Linear? Time-

Invariant? 

Causality? 

(a) Averaging 

Finite Impulse 

Response Filter 

𝑦[𝑛] = 𝑥[𝑛] + 𝑥[𝑛 + 1] 
for − ∞ < 𝑛 < ∞  

YES YES NO 

(b) Averaging 

Infinite Impulse 

Response Filter 

𝑦[𝑛] = 0.9 𝑦[𝑛 − 1] + 0.1 𝑥[𝑛] 
for 𝑛 ≥ 0 

NO NO YES 

(c) Phase 

Modulation 

𝑦[𝑛] = cos(𝜔̂0 𝑛 +  𝑥[𝑛]) 
where 𝜔̂0 is a constant 

for − ∞ < 𝑛 < ∞  

NO NO YES 

Linearity. First, we’ll apply the all-zero input test— input 𝒙[𝒏] = 𝟎 𝐟𝐨𝐫 𝐚𝐥𝐥 𝐨𝐛𝐬𝐞𝐫𝐯𝐞𝐝 𝐭𝐢𝐦𝐞 𝒏 and 

if the output is not zero for all 𝐨𝐛𝐬𝐞𝐫𝐯𝐞𝐝 𝐭𝐢𝐦𝐞 𝒏, then the system is not linear.  Otherwise, we’ll 

have to apply the definitions for homogeneity and additivity.  All-zero input test is a special case 

of homogeneity 𝒂 𝒙[𝒏] → 𝒂 𝒚[𝒏] when the constant 𝒂 = 𝟎. 

Causality: Current output only depends on current input, previous input and/or previous output. 

(a) Averaging Finite Impulse Response Filter:  𝑦[𝑛] = 𝑥[𝑛] + 𝑥[𝑛 + 1] for − ∞ < 𝑛 < ∞.  9 points. 

Linearity:  Passes all-zero input test.  No initial conditions due to observing −∞ < 𝒏 < ∞.  YES, 

• Homogeneity: Input 𝒂 𝒙[𝒏]. Output is 

 𝒚𝒔𝒄𝒂𝒍𝒆𝒅[𝒏] = (𝒂 𝒙[𝒏]) + (𝒂 𝒙[𝒏])𝒏→𝒏+𝟏 = 𝒂 𝒙[𝒏] + 𝒂 𝒙[𝒏 + 𝟏] = 𝒂 𝒚[𝒏]? YES. 

• Additivity. Input 𝒙𝟏[𝒏] + 𝒙𝟐[𝒏].  Output is 

𝒚𝒂𝒅𝒅𝒊𝒕𝒊𝒗𝒆[𝒏] = (𝒙𝟏[𝒏] + 𝒙𝟐[𝒏]) + (𝒙𝟏[𝒏] + 𝒙𝟐[𝒏])𝒏→𝒏+𝟏 = (𝒙𝟏[𝒏] + 𝒙𝟐[𝒏]) + (𝒙𝟏[𝒏 +
𝟏] + 𝒙𝟐[𝒏 + 𝟏]) = 𝒙𝟏[𝒏] + 𝒙𝟏[𝒏 + 𝟏] + 𝒙𝟐[𝒏] + 𝒙𝟐[𝒏 + 𝟏] = 𝒚𝟏[𝒏] + 𝒚𝟐[𝒏]?  YES. 

T-I. Input 𝒙[𝒏 − 𝒏𝟎]. Output 𝒚𝒔𝒉𝒊𝒇𝒕𝒆𝒅[𝒏] = 𝒙[𝒏 − 𝒏𝟎] + 𝒙[𝒏 − 𝒏𝟎 + 𝟏] = 𝒚[𝒏 − 𝒏𝟎]?  YES 

Causality: Current output depends on 𝒙[𝒏 + 𝟏], which is the input one sample in the future.  NO. 

(b) Averaging Infinite Impulse Response Filter: 𝑦[𝑛] = 0.9 𝑦[𝑛 − 1] + 0.1 𝑥[𝑛] for 𝑛 ≥ 0.  Analyze 

the impact of the initial condition(s) on the system properties.  9 points. 

Linearity: All-zero input test: 𝒚[𝒏] = 𝟎. 𝟗 𝒚[𝒏 − 𝟏] 𝐟𝐨𝐫 𝒏 ≥ 𝟎.  First output is 𝒚[𝟎] = 𝟎. 𝟗 𝒚[−𝟏].  
YES if 𝒚[−𝟏] = 𝟎.  Since 𝒚[−𝟏] is unspecified, NO. 

T-I. The initial condition does not shift when the input shifts. Since 𝒚[−𝟏] is unspecified, NO. 

Causality: Current output depends on previous output 𝐲[𝐧 − 𝟏] and current input 𝐱[𝐧].  YES. 

(c) Phase Modulation: 𝑦[𝑛] = cos(𝜔̂0 𝑛 +  𝑥[𝑛]) where 𝜔̂0 is constant and − ∞ < 𝑛 < ∞   9 points. 

Linearity: All-zero input test: 𝒚[𝒏] = 𝐜𝐨𝐬(𝝎̂𝟎 𝒏).  Output is not zero for all time.  NO. 

Time-Invariance: With input 𝒙[𝒏 − 𝒏𝟎], 𝒚𝒔𝒉𝒊𝒇𝒕𝒆𝒅[𝒏] = 𝐜𝐨𝐬(𝝎̂𝟎 𝒏 +   𝒙[𝒏 − 𝒏𝟎]).  For all values of 

of 𝒏𝟎, does 𝒚𝒔𝒉𝒊𝒇𝒕𝒆𝒅[𝒏] = 𝒚[𝒏 − 𝒏𝟎]?  Here, 𝒚[𝒏 − 𝒏𝟎] = 𝐜𝐨𝐬(𝝎̂𝟎 (𝒏 − 𝒏𝟎) +   𝒙[𝒏 − 𝒏𝟎]).  NO. 

Causality: Current output only depends on current input.  YES. 

HW 5.2 

 

SPFirst Sec. 5-4, 5-5, 8-2 & 8-4.2 

 
HW 5.2 

 
Midterms: F18 Prob 2.5, F21 Prob 2.1, F23 Prob. 2.1 & F24 Prob 2.1 

Lecture Slides 8-3 to 8-6, 8-8 & 12-11 to 12-15  

 



Problem 2.2 FIR Filter Analysis.  25 points. 

Consider the following causal finite impulse response (FIR) linear time-invariant (LTI) filter with 

input x[n] and output y[n] described by 

 y[n] = x[n] - a x[n-1] 

for 𝑛 ≥ 0.  Here 𝑎 is a real-valued constant where 𝑎 ≠ 0. 

(a) Give a formula for the impulse response h[n].  Plot h[n].  3 points. 

The impulse response is the system response to an impulse, 𝜹[𝒏]. 
Let 𝒙[𝒏] = 𝜹[𝒏] and the impulse response is 𝒉[𝒏] = 𝜹[𝒏] − 𝒂 𝜹[𝒏 − 𝟏]. 

(b) What are the initial condition(s)?  What are their value(s)?  3 points. 

The system must be at rest as a necessary condition for LTI to hold; i.e, the initial 

condition(s) must be zero.  We can determine the initial conditions by starting at 𝒏 = 𝟎: 

𝒚[𝟎] = 𝒙[𝟎] − 𝒂 𝒙[−𝟏] which depends on an initial condition 𝒙[−𝟏].  So, 𝒙[−𝟏] = 𝟎. 
𝒚[𝟏] = 𝒙[𝟏] − 𝒂 𝒙[𝟎] which does not depend on any initial conditions. 

(c) Compute the transfer function 𝐻(𝑧) in the z-domain and give the region of convergence.  3 points. 

Take the z-transform of both sides of 𝒚[𝒏] = 𝒙[𝒏] − 𝒂 𝒙[𝒏 − 𝟏] with 𝒙[−𝟏] = 𝟎: 

𝒀(𝒛) = 𝑿(𝒛) − 𝒂 𝒛−𝟏 𝑿(𝒛) 

Divide each side by 𝑿(𝒛) gives 

𝑯(𝒛) =
𝒀(𝒛)

𝑿(𝒛)
= 𝟏 − 𝒂 𝒛−𝟏 =

𝒛 − 𝒂

𝒛
  𝐟𝐨𝐫 𝒛 ≠ 𝟎 

We have to exclude 𝒛 = 𝟎 to avoid division by zero in the expression 𝒛−𝟏. 

(d) Give a formula for the discrete-time frequency response of the FIR filter.  4 points. 

Because the region of convergence 𝒛 ≠ 𝟎 includes the unit circle, it’s valid to substitute 𝒛 =
 𝒆𝒋 𝝎̂ to convert the transfer function in the z-domain to a frequencey response: 

𝑯(𝒆𝒋 𝝎̂) = 𝟏 − 𝒂 𝒆−𝒋 𝝎̂ =
𝒆𝒋 𝝎̂ − 𝒂

𝒆𝒋 𝝎̂
   

(e) Does the FIR filter have linear phase?  If yes, then give the conditions on the coefficient a for the 

filter to have linear phase.  If no, then show that the coefficients cannot meet the conditions for 

linear phase. 6 points 

An N-point FIR filter has linear phase when its impulse response is either even symmetric or 

odd symmetric about its midpoint.  The midpoint is at 𝒏 =
𝑵−𝟏

𝟐
=

𝟏

𝟐
 sample.  Here, 𝑵 = 𝟐. 

Even symmetry. 𝒉[𝒏] = 𝒉[𝑵 − 𝟏 − 𝒏] 𝐟𝐨𝐫 𝒏 = 𝟎, 𝟏, … , 𝑵 − 𝟏.  Here, 𝒉[𝟎] = 𝒉[𝟏] or 𝒂 = −𝟏. 
Odd symmetry. 𝒉[𝒏] = −𝒉[𝑵 − 𝟏 − 𝒏] 𝐟𝐨𝐫 𝒏 = 𝟎, 𝟏, … , 𝑵 − 𝟏.  Here, 𝒉[𝟎] = −𝒉[𝟏] or 𝒂 = 𝟏. 

(f) What are all of the possible frequency selectivities that the FIR filter could provide: lowpass, 

highpass, bandpass, bandstop, or allpass?  6 points 

Answer #1: Transfer function has zero at 𝒛 = 𝒂 and pole at 𝒛 = 𝟎.  A pole at origin does not 

affect the magnitude response.  When 𝒂 ≈ 𝟏, low frequencies attenuated (highpass).  Vice-

versa when 𝒂 ≈ −𝟏 (lowpass).  As 𝒂 → ∞ or 𝒂 → −∞ or 𝒂 → 𝟎, filter is allpass. 

Answer #2: When a = 1, 𝒚[𝒏] = 𝒙[𝒏] −  𝒙[𝒏 − 𝟏] is a first-order difference (highpass) filter.  

When a = -1, 𝒚[𝒏] = 𝒙[𝒏] +  𝒙[𝒏 − 𝟏] is a two-point averaging (lowpass) filter. 

  Answer #3: The magnitude response is lowpass when 𝒂 ≈ −𝟏 and highpass when 𝒂 ≈ 𝟏: 

| 𝑯(𝒆𝒋 𝝎̂)| = |
𝒆𝒋 𝝎̂ − 𝒂

𝒆𝒋 𝝎̂
|  =  

|𝒆𝒋 𝝎̂ − 𝒂|

|𝒆𝒋 𝝎̂|
= |𝒆𝒋 𝝎̂ − 𝒂| 

Midterms: F21 Prob 2.3(a), F23 Prob. 2.4 & F24 Prob 2.2 

SPFirst Sec. 6-1 to 6-6 & 8-2 to 8-6 

 
Lecture Slides 8-3 to 8-8 and 11-12 to 11-13  

 
HW 4.2, 6.1, 7.1 & 7.2 

 

Tuneup #6 



Problem 2.3 System Identification.  24 points.  

You’re trying to identify unknown discrete-time systems. 

You input a discrete-time chirp signal 𝑥[𝑛] and look at the output to figure out what the system is. 

The discrete-time chirp is formed by sampling a chirp signal that sweeps 0 to 8000 Hz over 0 to 5s 

𝑥(𝑡) = cos(2𝜋𝑓1𝑡 + 2𝜋𝜇𝑡2) 

where 𝑓1 = 0 Hz, 𝑓2 = 8000 Hz, and 𝜇 =
𝑓2−𝑓1

2 𝑡max
=

8000 Hz

10 𝑠
= 800 Hz2.  Sampling rate 𝑓𝑠 is 16000 Hz. 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

In each part below, identify the unknown system 

as one of the following with justification: 

1. filter – give the frequency selectivity (lowpass, 

highpass, bandpass, bandstop) as well as the 

passband and stopband frequencies 

2. pointwise nonlinearity – give the integer exponent 

k to produce output 𝑦[𝑛] = 𝑥𝑘[𝑛] 

3. amplitude modulation – give the amplitude 

modulation frequency 𝑓0 to produce output 

𝑦[𝑛] = cos(𝜔0 𝑛) 𝑥[𝑛] where 𝜔0 = 2𝜋 𝑓0 / 𝑓𝑠 . 
 

Spectrogram for chirp signal 𝑥[𝑛] 

(a) When the chirp signal 𝑥[𝑛] is input, a system gives the 

output signal 𝑦[𝑛] whose spectrogram is plotted on the 

left.  12 points. 

No new frequencies are being created— hence, this is an 

LTI system.  The output shows that the LTI system 

passes frequencies from 0 to ~2 kHz and attenuates 

higher frequencies.  Lowpass filter with passband 

frequencies 0-2 kHz and stopband frequencies 2-8 kHz. 

(b) When the chirp signal 𝑥[𝑛] is input, another system 

gives the output signal 𝑦[𝑛] whose spectrogram is 

plotted on the left. 12 points 

From 0s to 1s, output has frequencies not previously 

seen on the input.  The system cannot be LTI. 

The output contains the input chirp signal plus another 

frequency component that appears like an italic letter N.  

From 0s to 1.67s, this additional component has 3x the 

slope of the input chirp.  Output is 𝒚[𝒏] = 𝒙𝟑[𝒏], e.g. 

𝒚(𝒕) = 𝐜𝐨𝐬𝟑(𝒇𝟏 𝒕) =
𝟏

𝟒
 𝐜𝐨𝐬(𝟑 𝒇𝟏 𝒕) +

𝟑

𝟒
𝐜𝐨𝐬(𝒇𝟏 𝒕) 

Aliasing occurs from 1.67s to 3.33s and from 3.33s to 5s. 

Hint: On the right of each spectrogram plot is an intensity map to decibels (dB).  All values are negative. 

Mini-Project #2 

 
Tuneup #7 

 

SPFirst Sec.3-7 to 3-8 and 4-1 to 4-5 and 5-5 to 5-8 and 6-1 to 6-6 

 

HW 4.1, 4.2, 4.3, 5.1, 5.4, 6.1, 7.2 

 
Lectures Slides 4-4 to 4-12 and 5-9 to 5-13 and 6-1 to 6-7 and 8-6 to 8-9 and 9-3 to 9-10 

 



Part (b) is related to Fall 2017 Midterm Problem 1.4(c). 

 

In our case, 𝒚[𝒏] = 𝒙𝟑[𝒏].  For every chirp frequency 𝒇𝟏 on the input  

 

𝒚(𝒕) = 𝐜𝐨𝐬𝟑(𝒇𝟏 𝒕) =
𝟏

𝟒
 𝐜𝐨𝐬(𝟑 𝒇𝟏 𝒕) +

𝟑

𝟒
𝐜𝐨𝐬(𝒇𝟏 𝒕) 

 

The spectrogram below tracks the 𝐜𝐨𝐬(𝟑 𝒇𝟏 𝒕) component. 
 

 
 

Spectrogram is showing positive and negative frequencies. 

 

Sampling theorem:  𝒇𝒔 > 𝟐 𝒇𝒎𝒂𝒙 which means 𝒇𝒎𝒂𝒙 <
𝟏

𝟐
 𝒇𝒔 . 

 

Frequencies at or above 
𝟏

𝟐
 𝒇𝒔 will alias and frequencies at or below −

𝟏

𝟐
 𝒇𝒔 will alias. 

  



%% Matlab code to generate the spectrograms for Problem 2.3 

fs = 16000; 

Ts = 1 / fs; 

tmax = 5; 

t = 0 : Ts : tmax; 

  

%% Create chirp signal 

f1 = 0; 

f2 = fs/2; 

mu = (f2 - f1) / (2*tmax); 

x = cos(2*pi*f1*t + 2*pi*mu*(t.^2)); 

  

%% (a) Lowpass Filter 

fnyquist = fs/2; 

fpass = 2000; 

fstop = 2200; 

ctfrequencies = [0 fpass fstop fnyquist]; 

idealAmplitudes = [1 1 0 0]; 

pmfrequencies = ctfrequencies / fnyquist; 

filterOrder = 400; 

h = firpm( filterOrder, pmfrequencies, idealAmplitudes ); 

h = h / sum(h .^ 2); 

  

y = conv(x, h); 

  

  

%%% Spectrogram parameters 

blockSize = 1024;  

overlap = 1023; 

  

%%% Plot spectrogram of input signal 

figure; 

spectrogram(x, blockSize, overlap, blockSize, fs, 'yaxis'); 

colormap bone; 

  

%%% Plot spectrogram of output signal 

figure; 

spectrogram(y, blockSize, overlap, blockSize, fs, 'yaxis'); 

colormap bone; 

  

%% (b) Cubic nonlinearity 

y = x .^ 3; 

  

%%% Spectrogram parameters 

blockSize = 1024;  

overlap = 1023; 

  

%%% Plot spectrogram of input signal 

figure; 

spectrogram(x, blockSize, overlap, blockSize, fs, 'yaxis'); 

colormap bone; 

  

%%% Plot spectrogram of output signal 

figure; 

spectrogram(y, blockSize, overlap, blockSize, fs, 'yaxis'); 

colormap bone;  



Problem 2.4. Upsampling, Downsampling, and Filtering.  24 points. 

This problem is related to mini-project #2. Please justify your answers. 

The impulse responses for four LTI filters 𝐿𝐴, 𝐻𝐴, 𝐿𝑆, and 𝐻𝑆 are shown below. These filters are cascaded with 

downsampling (↓2) and upsampling (↑2) operations as shown in the block diagrams below. 

 

i. Match each of the six system block diagrams with the magnitude responses (A-F) shown below. The 

magnitude response plot represents the change in magnitude when a complex sinusoid is input to the system, 

disregarding other frequencies that are created by upsampling.  

ii. For each system, state whether or not the passband width is an octave. Assume that the passband is the set of 

frequencies where the magnitude response is greater than or equal to 0.5. 

 

System Block Diagram 
Match 

(A-F) 

Is an 

octave? 

 E No 

 F Yes 

 D No 

 C Yes 

 A No 

 B Yes 

 

  

Mini-Project #2 

 
Tuneup #7 

 

SPFirst Sec.4-1 to 4-5 and 5-5 to 5-8 and 6-1 to 6-6 

 

HW 4.1, 4.2, 5.1, 5.4, 6.1, 7.2 

 
Lectures Slides 5-9 to 5-13 and 6-1 to 6-7 and 8-6 to 8-9 and 9-3 to 9-10 

 



Lowpass filters 𝑳𝑨 and 𝑳𝑺 are halfband filters with passbands from 0 to 𝝅/𝟐. 
Highpass filters 𝑯𝑨 and 𝑯𝑺 are halfband filters with passbands from 𝝅/𝟐 to 𝝅. 
Each system block diagram in linear time-varying which we will model as linear time-invariant. 

 

Approach #1: Consider a discrete-time complex sinusoid 𝑥[𝑛] = 𝑒𝑗𝜔̂𝑛. Each downsampling stage 

doubles the discrete-time frequency. Each upsampling stage halves the frequency, scales the 

amplitude, and creates another frequency component shifted by 𝜋: 

↓2 {𝑒𝑗𝜔̂𝑛} = 𝑒𝑗𝜔̂(2𝑛) = 𝑒𝑗(2𝜔̂)𝑛, ↑2 {𝑒𝑗𝜔̂𝑛} =
1

2
𝑒𝑗

𝜔̂
2

𝑛 +
1

2
𝑒

𝑗(
𝜔̂
2

−𝜋)𝑛
 

For a cascade of 𝑁 filters with equal downsampling and upsampling stages, the output will include a 

component at the original frequency. At this frequency, the effective frequency response is: 

𝐻eff(𝜔̂) =
1

2(𝑁/2)
∏ 𝐻𝑘(𝑒𝑗𝜔𝑘)

𝑁−1

𝑘=1

, 𝜔̂𝑘 = 2𝐷𝑘−𝑈𝑘𝜔̂ 

Here 𝐷𝑘 is the number of downsampling stages applied prior to applying the 𝑘th filter and 𝑈𝑘 is the 

number of upsampling stages applied prior to applying the 𝑘th filter.  This is an LTI model. 

Is it an octave?  Lowpass and highpass filters 𝐿𝐴 and 𝐻𝐴 have passband widths of 𝜋/2. Each lowpass 

filter + downsampling extracts the lower half of the frequency band. If the final downsampling filter is 

highpass, it extracts the upper half of the frequency band, yielding one octave, as in rows 2, 4 & 6. 

 

Approach #2: From the plot below in Section 3.0 of the mini-project #2 solution, 

 

In the table:  Second row matches F.  Third row matches D.  Fourth row matches C. 

Need to use one of the other approaches to find the remaining matches. 

 

Approach #3: We’ll directly reuse results from the mini-project #2 assignment and solution. 

Downsampling stage: Filtering followed by downsampling by 2. 

 

 

 

 
 

Upsampling stage: Upsampling by 2 followed by filtering. 

 

 

 

 
 

https://users.ece.utexas.edu/~bevans/courses/signals/homework/fall2025/miniproject2sol.pdf
https://users.ece.utexas.edu/~bevans/courses/signals/homework/fall2025/miniproject2.pdf
https://users.ece.utexas.edu/~bevans/courses/signals/homework/fall2025/miniproject2sol.pdf


Single cascade: a downsampling stage followed by an upsampling stage. 

 

 

 

For 𝑥[𝑛] = 𝑒𝑗 𝜔̂ 𝑛, the effective frequency response from input 𝑥[𝑛] to 

output 𝑥̂[𝑛] for the input frequency 𝜔̂, which is obtained by ignoring the 

second term in 𝑦2[𝑛/2] for the output of upsampling by 2, is 

First row:  Using this result, the first row in the table has an effective frequency response that is 

the product of two lowpass halfband filters 𝑳𝑨 𝑳𝑺, which is a lowpass halfband filter with 

passband from 0 to 𝝅/𝟐.  Match: E.   

Second row: Likewise, the second row in the table has an effective frequency response that is the 

product of two highpass halfband filters 𝑯𝑨 𝑯𝑺, which is a highpass halfband filter with 

passband from 𝝅/𝟐 to 𝝅.  Match: F. 

Double cascade: two downsampling stages in cas cade followed by two upsampling stages in cascade. 

For 𝑥[𝑛] = 𝑒𝑗 𝜔̂ 𝑛, the effective frequency response from input 𝑥[𝑛] to output 𝑥̂[𝑛] for the input 

frequency 𝜔̂, which is obtained by ignoring the second term in 𝑦2[𝑛/2] for the output of each 

upsampling by 2, is 

 
 

Third row: Using this result, the third row in the table has filters 𝑳𝑨, 𝑳𝑨, 𝑳𝑺, 𝐚𝐧𝐝 𝑳𝑺, and their 

effective frequency response matches D.   

Fourth row: Likewise, the fourth row in the table has filters 𝑳𝑨, 𝑯𝑨, 𝑯𝑺, 𝐚𝐧𝐝 𝑳𝑺, and their 

effective frequency response matches C. 

Fifth row: All the filters in the fifth row are lowpass, which will yield an effective lowpass 

frequency response equal to the narrowest bandwidth among the six lowpass filters.  Matches A. 

Sixth row: By process of elimination, the sixth row in the table matches B. 

 

 

The Matlab code to generate the figures is provided below. 
 
% Coefficients for a dyadic perfect reconstruction filterbank 

% Based on the Cohen–Daubechies–Feauveau wavelet (bior6.8) 

 

% If the wavelet toolbox is installed, you can also use the following code: 

% [LA, HA, LS, HS] = wfilters('bior6.8'); 

% LA = LA(2:end)/sqrt(2); HA(2:end) = HA/sqrt(2); 

% LS= sqrt(2)*LS(2:end); HS = sqrt(2)*HS(2:end); 

 

coeffs = [ 

       0.00134974786501001                       0                       0    -0.00269949573002003 

      -0.00135360470301001                       0                       0    -0.00270720940602003 

       -0.0120141966670801      0.0102009221870399      0.0204018443740798      0.0240283933341602 

       0.00843901203981008     -0.0102300708193699      0.0204601416387398      0.0168780240796202 

        0.0351664733065404     -0.0556648607799594      -0.111329721559919     -0.0703329466130807 

       -0.0546333136825205      0.0285444717151497     -0.0570889434302994      -0.109266627365041 

       -0.0665099006248407       0.295463938592917       0.590927877185834       0.133019801249681 

         0.297547906345713      -0.536628801791565        1.07325760358313       0.595095812691426 



         0.584015752240756       0.295463938592917       0.590927877185834       -1.16803150448151 

         0.297547906345713      0.0285444717151497     -0.0570889434302994       0.595095812691426 

       -0.0665099006248407     -0.0556648607799594      -0.111329721559919       0.133019801249681 

       -0.0546333136825205     -0.0102300708193699      0.0204601416387398      -0.109266627365041 

        0.0351664733065404      0.0102009221870399      0.0204018443740798     -0.0703329466130807 

       0.00843901203981008                       0                       0      0.0168780240796202 

       -0.0120141966670801                       0                       0      0.0240283933341602 

      -0.00135360470301001                       0                       0    -0.00270720940602003 

       0.00134974786501001                       0                       0    -0.00269949573002003 

]; 

 

LA = coeffs(:,1); % Lowpass Analysis 

HA = coeffs(:,2); % Highpass Analysis 

LS = coeffs(:,3); % Lowpass Synthesis 

HS = coeffs(:,4); % Highpass Synthesis 

 

w = linspace(0,pi,201); 

[HLA, ~] = freqz(LA,1,w); 

[HLA2, ~] = freqz(LA,1,2*w,'whole'); 

[HLA4, ~] = freqz(LA,1,4*w,'whole'); 

[HHA, ~] = freqz(HA,1,w); 

[HHA2, ~] = freqz(HA,1,2*w,'whole'); 

[HHA4, ~] = freqz(HA,1,4*w,'whole'); 

[HLS, ~] = freqz(LS,1,w); 

[HLS2, ~] = freqz(LS,1,2*w,'whole'); 

[HLS4, ~] = freqz(LS,1,4*w,'whole'); 

[HHS, ~] = freqz(HS,1,w); 

[HHS2, ~] = freqz(HS,1,2*w,'whole'); 

[HHS4, ~] = freqz(HS,1,4*w,'whole'); 

 

% 0 to pi/8  

H_band1 = 0.125*HLA.*HLA2.*HLA4.*HLS4.*HLS2.*HLS; 

figure; plot(w,abs(H_band1),'k',linewidth=2) 

 

% pi/8 to pi/4 

H_band2 = 0.125*HLA.*HLA2.*HHA4.*HHS4.*HLS2.*HLS; 

hold on; plot(w,abs(H_band2),'k:',linewidth=2) 

 

% pi/4 to 3*pi/8  

H_band3 = 0.25*HLA.*HHA2.*HHS2.*HLS; 

hold on; plot(w,abs(H_band3),'k--',linewidth=2) 

 

xlim([0,pi]); set(gca,'XTick', ... 

    [0,pi/8,pi/4,pi/2,pi]) 

set(gca,'TickLabelInterpreter','latex') 

set(gca,'XTickLabels',["0", "$\pi/8$", "$\pi/4$","$\pi/2$","$\pi$"]) 

xlabel('Frequency [radians per sample]','Interpreter','latex') 

ylabel('Magnitude response ','Interpreter','latex') 

grid on; 

legend("A","B","C",'location','east') 

 

% 0 to pi/4  

H_band1 = 0.25*HLA.*HLA2.*HLS2.*HLS; 

figure; plot(w,abs(H_band1),'k-',linewidth=2) 

 

% 0 to pi/2 

H_band2 = 0.5*HLA.*HLS; 

hold on; plot(w,abs(H_band2),'k:',linewidth=2) 

 

% pi/2 to pi 

H_band4 = 0.5*HHA.*HHS; 

hold on; plot(w,abs(H_band4),'k--',linewidth=2) 

 

xlim([0,pi]); set(gca,'XTick', ... 

    [0,pi/4,pi/2,pi]) 

set(gca,'TickLabelInterpreter','latex') 

set(gca,'XTickLabels',["0", "$\pi/4$","$\pi/2$","$\pi$"]) 

xlabel('Frequency [radians per sample]','Interpreter','latex') 

ylabel('Magnitude response ','Interpreter','latex') 

grid on; 

legend("D","E","F",'location','east') 


